92 research outputs found

    Twelve monotonicity conditions arising from algorithms for equilibrium problems

    Get PDF
    In the last years many solution methods for equilibrium problems (EPs) have been developed. Several different monotonicity conditions have been exploited to prove convergence. The paper investigates all the relationships between them in the framework of the so-called abstract EP. The analysis is further detailed for variational inequalities and linear EPs, which include also Nash EPs with quadratic payoffs

    Descent and penalization techniques for equilibrium problems with nonlinear constraints

    Get PDF
    This paper deals with equilibrium problems with nonlinear constraints. Exploiting a gap function recently introduced, which rely on a polyhedral approximation of the feasible region, we propose two descent methods. They are both based on the minimization of a suitable exact penalty function, but they use different rules for updating the penalization parameter and they rely on different types of line search. The convergence of both algorithms is proved under standard assumptions

    A Game-Theoretic Approach for Runtime Capacity Allocation in MapReduce

    Get PDF
    Nowadays many companies have available large amounts of raw, unstructured data. Among Big Data enabling technologies, a central place is held by the MapReduce framework and, in particular, by its open source implementation, Apache Hadoop. For cost effectiveness considerations, a common approach entails sharing server clusters among multiple users. The underlying infrastructure should provide every user with a fair share of computational resources, ensuring that Service Level Agreements (SLAs) are met and avoiding wastes. In this paper we consider two mathematical programming problems that model the optimal allocation of computational resources in a Hadoop 2.x cluster with the aim to develop new capacity allocation techniques that guarantee better performance in shared data centers. Our goal is to get a substantial reduction of power consumption while respecting the deadlines stated in the SLAs and avoiding penalties associated with job rejections. The core of this approach is a distributed algorithm for runtime capacity allocation, based on Game Theory models and techniques, that mimics the MapReduce dynamics by means of interacting players, namely the central Resource Manager and Class Managers

    Gap functions for quasi-equilibria

    Get PDF
    An approach for solving quasi-equilibrium problems (QEPs) is proposed relying on gap functions, which allow reformulating QEPs as global optimization problems. The (generalized) smoothness properties of a gap function are analysed and an upper estimate of its Clarke directional derivative is given. Monotonicity assumptions on both the equilibrium and constraining bifunctions are a key tool to guarantee that all the stationary points of a gap function actually solve QEP. A few classes of constraints satisfying such assumptions are identified covering a wide range of situations. Relying on these results, a descent method for solving QEP is devised and its convergence proved. Finally, error bounds are given in order to guarantee the boundedness of the sequence generated by the algorithm

    Auxiliary problem principles for equilibria

    Get PDF
    The auxiliary problem principle allows solving a given equilibrium problem (EP) through an equivalent auxiliary problem with better properties. The paper investigates two families of auxiliary EPs: the classical auxiliary problems, in which a regularizing term is added to the equilibrium bifunction, and the regularized Minty EPs. The conditions that ensure the equivalence of a given EP with each of these auxiliary problems are investigated exploiting parametric definitions of different kinds of convexity and monotonicity. This analysis leads to extending some known results for variational inequalities and linear EPs to the general case together with new equivalences. Stationarity and convexity properties of gap functions are investigated as well in this framework. Moreover, both new results on the existence of a unique solution and new error bounds based on gap functions with good convexity properties are obtained under weak quasimonotonicity or weak concavity assumptions

    D-gap functions and descent techniques for solving equilibrium problems

    Get PDF
    A new algorithm for solving equilibrium problems with differentiable bifunctions is provided. The algorithm is based on descent directions of a suitable family of D-gap functions. Its convergence is proved under assumptions which do not guarantee the equivalence between the stationary points of the D-gap functions and the solutions of the equilibrium problem. Moreover, the algorithm does not require to set parameters according to thresholds which depend on regularity properties of the equilibrium bifunction. The results of preliminary numerical tests on Nash equilibrium problems with quadratic payoffs are reported. Finally, some numerical comparisons with other D-gap algorithms are drawn relying on some further tests on linear equilibrium problems

    Gap functions for quasi-equilibria

    Get PDF
    An approach for solving quasi-equilibrium problems (QEPs) is proposed relying on gap functions, which allow reformulating QEPs as global optimization problems. The (generalized) smoothness properties of a gap function are analysed and an upper estimates of its Clarke directional derivative is given. Monotonicity assumptions on both the equilibrium and constraining bifunctions are a key tool to guarantee that all the stationary points of a gap function actually solve QEP. A few classes of constraints satisfying such assumptions are identified covering a wide range of situations. Relying on these results, a descent method for solving QEP is devised and its convergence proved. Finally, error bounds are given in order to guarantee the boundedness of the sequence generated by the algorithm

    Service provisioning problem in cloud and multi-cloud systems

    Get PDF
    Cloud computing is a new emerging paradigm that aims to streamline the on-demand provisioning of resources as services, providing end users with flexible and scalable services accessible through the Internet on a pay-per-use basis. Because modern cloud systems operate in an open and dynamic world characterized by continuous changes, the development of efficient resource provisioning policies for cloud-based services becomes increasingly challenging. This paper aims to study the hourly basis service provisioning problem through a generalized Nash game model. We take the perspective of Software as a Service (SaaS) providers that want to minimize the costs associated with the virtual machine instances allocated in a multiple Infrastructures as a Service (IaaS) scenario while avoiding incurring penalties for execution failures and providing quality of service guarantees. SaaS providers compete and bid for the use of infrastructural resources, whereas the IaaSs want to maximize their revenues obtained providing virtualized resources. We propose a solution algorithm based on the best-reply dynamics, which is suitable for a distributed implementation. We demonstrate the effectiveness of our approach by performing numerical tests, considering multiple workloads and system configurations. Results show that our algorithm is scalable and provides significant cost savings with respect to alternative methods (5% on average but up to 260% for individual SaaS providers). Furthermore, varying the number of IaaS providers means an 8%-15% cost savings can be achieved from the workload distribution on multiple IaaSs

    Solving non-monotone equilibrium problems via a DIRECT-type approach

    Full text link
    A global optimization approach for solving non-monotone equilibrium problems (EPs) is proposed. The class of (regularized) gap functions is used to reformulate any EP as a constrained global optimization program and some bounds on the Lipschitz constant of such functions are provided. The proposed global optimization approach is a combination of an improved version of the \texttt{DIRECT} algorithm, which exploits local bounds of the Lipschitz constant of the objective function, with local minimizations. Unlike most existing solution methods for EPs, no monotonicity-type condition is assumed in this paper. Preliminary numerical results on several classes of EPs show the effectiveness of the approach.Comment: Technical Report of Department of Computer Science, University of Pisa, Ital

    Chemotherapy planning and multi-appointment scheduling: formulations, heuristics and bounds

    Full text link
    The number of new cancer cases is expected to increase by about 50% in the next 20 years, and the need for chemotherapy treatments will increase accordingly. Chemotherapy treatments are usually performed in outpatient cancer centers where patients affected by different types of tumors are treated. The treatment delivery must be carefully planned to optimize the use of limited resources, such as drugs, medical and nursing staff, consultation and exam rooms, and chairs and beds for the drug infusion. Planning and scheduling chemotherapy treatments involve different problems at different decision levels. In this work, we focus on the patient chemotherapy multi-appointment planning and scheduling problem at an operational level, namely the problem of determining the day and starting time of the oncologist visit and drug infusion for a set of patients to be scheduled along a short-term planning horizon. We use a per-pathology paradigm, where the days of the week in which patients can be treated, depending on their pathology, are known. We consider different metrics and formulate the problem as a multi-objective optimization problem tackled by sequentially solving three problems in a lexicographic multi-objective fashion. The ultimate aim is to minimize the patient's discomfort. The problems turn out to be computationally challenging, thus we propose bounds and ad-hoc approaches, exploiting alternative problem formulations, decomposition, and kk-opt search. The approaches are tested on real data from an Italian outpatient cancer center and outperform state-of-the-art solvers.Comment: 28 pages, 3 figure
    • …
    corecore